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ABSTRACT 

The purpose of this thesis is to investigate the application of a six-state discrete 

Kaiman filter for estimates of angular rates based solely on star sensor data. The satellite 

is in a Molnyia orbit where orbital angular velocity and orbital angular acceleration are 

predetermined and stored in the on-board computer; such that they will be available each 

time a star observation is made. A two-axis star sensor will provide two angles to the 

estimator whereupon the third "unsensed" angle will be predicted; the rates about all three 

axes are then estimated. The results show that the rate estimates are accurate to within 

10"7 r/s, which is equivalent to the data produced by gyroscopes. 
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I. INTRODUCTION 

The space industry has grown at an alarming rate over the last decade and should 

continue to do so in the future. Information and data received from satellites is generally 

taken for granted. Only when a critical satellite outage occurs is society rudely reminded 

of their ever-increasing dependence on these vehicles. For example, the premature and 

unexpected failure of Galaxy IV temporarily left millions of people without pager 

service. This dependence translates into big business. Therefore, when a satellite suffers 

a failure that threatens its life expectancy, every effort will be made to save it. 

Recently, the SOHO spacecraft tumbled out of control after suffering from 

multiple gyroscope failures. As a result, European engineers were forced to create a 

software package that would over-ride the failed hardware. It took six months to write 

and test the code, but it was time well spent, as control of the billion dollar spacecraft was 

once again regained after a successful up-link. SOHO is now able to autonomously 

maintain proper attitude relative to the sun using its star tracker as the primary control 

sensor. As a matter of fact, this may be a sign of things to come considering that the 

reliability of a gyroscope decreases significantly with time. Even though the addition of 

redundant gyroscopes will serve to increase reliability, it will also increase cost, 

complexity and mass. SOHO is testimony to the fact that, in certain cases, software is 

more feasible than hardware. 

Manufacturers of gyroscopes will obviously be opposed to the demise of their 

hardware, but with improvements in both on-board processing and star sensor 

capabilities, this area of investigation can no longer be ignored. To this end, the purpose 

of this thesis is to determine the utility of a six-state, discrete Kaiman filter in the 

estimation of satellite attitude. 

A.        OVERVIEW 

In order to test the Kaiman filter, an attitude control system must be developed. 

To help in this development, certain design criteria were mandated while others were 

self-imposed. Chapter II will summarize these requirements and assumptions. The 

proposed control flow of the attitude control system is shown below in Figure 1. 



r-+- 
*, 

Solar Pressure 
& 

Gravity 
Gradient 
Torques 

- 

PD Roll 
Controller 

RollRW 

' 

A, 

t              ' 
Spacecraft 
Kinematics 

& 
Dynamics 

JS$> /\   Error PD Pitch 
Controller 

Pitch RW <H?> t,0,v^ 

v1 

-»- 
*r 

V/"1 I 8, ifr 

1 L 

h A ^ 

A 

PDYaw 
Controller 

YawRW 

\  e, i// Noisy Roll Star 
Sensor 

1 
1 switch closes 

at random every 
10 seconds 

\ Kaiman Filter (*y^k- 4,v Noisy Pitch 
Star Sensor 

Ä 8, y U\r 
\ 

i i 

4,0 Noisy Yaw Star 
Sensor 

Figure 1: Attitude Control Diagram 

Disturbance moments will force the vehicle dynamics and will be briefly discussed in 

Chapter III; in addition, the orbital equations of motion will also be given in this chapter. 

The spacecraft equations of motion will be the topic of Chapter IV. The simulation will 

progress at discrete ten second intervals, which will be the sampling time of each star 

sensor to be described in Chapter V. Once a star sensor makes a noisy measurement, that 

information will be sent to the discrete Kaiman filter where both attitude and attitude 

rates will be estimated; Chapter VI will describe this process in more detail. The 

estimated output of the filter will be the input to the proportional plus derivative 

controller outlined in Chapter VII. The results and conclusion will follow accordingly. 



II.       CONTROL SYSTEM DESIGN SPECIFICATIONS 

As stated in the introduction, the purpose of this thesis is to develop a suitable 

attitude estimator based on star sensor measurements. The attitude control system will be 

designed according to the following parameters. 

A. SATELLITE SPECIFICATIONS 

• Molnyia orbit 

• Three star sensors aligned with the body axes 

• -10 second star sensor sampling time 

• 1 star present in star sensor field of view (FOV) at all times 

• 1 star sensor chosen at random at each time step 

• Roll and pitch inertia=25,000 kg-m2, yaw inertia=l5,000 kg-m2 

• Kaiman filter for rate estimation 

B. SELF-IMPOSED SPECIFICATIONS 

• Nadir pointing to within 0.1 ° of orbital reference frame 

• 4 arc-second noise level for each star sensor 

• 3-axis stabilized 

• 10-year design life 

C. ASSUMPTIONS 

Small angle approximations 

Orbital angular velocity and acceleration known for each sensor measurement 

Negligible cross products of inertia 

Constant solar pressure moments 

Each reaction wheel is independently controlled 

No slewing requirement 

Control law updates performed at 10 second intervals 

Satellite is modeled as a rigid body 



D.        CONTROL SYSTEM DESIGN CONSIDERATIONS 

As can be seen from the previous sections, considerable latitude has been given in 

the design of this control system. In order to achieve 0.1° pointing accuracy, a zero- 

momentum system, consisting of three reaction wheels whose momentum vectors 

coincide with the body axes, will be used. These reaction wheels will each be 

independently controlled with its own, dedicated proportional plus derivative (PD) 

controller. Control of the satellite will be difficult at perigee due to its high orbital 

angular velocity; consequently, the gains of the pitch controller will have to be adjusted 

accordingly. As disturbance moments cause errors in attitude, off-axis components of 

reaction wheel angular momentum will cause internal torques that will have to be 

accounted for. The star sensor described in Section A of this chapter is only able to sense 

errors about two axes, which means that the Kaiman filter will have to predict the error 

about the "un-sensed" axis. Not only will the filter be used to estimate position and rates, 

but it will also mitigate sensor noise. Crucial to this design is the assumption that the 

orbital angular velocity and acceleration are known for each star tracker observation. 



III.      SPACE ENVIRONMENT 

A. MOLNYIA ORBIT 

Countries located in high latitudes are forced to place communication satellites in 

highly eccentric orbits known as Molnyia orbits. These orbits, widely used by the Soviet 

Union, have the following characteristics: 63.5° inclination, elliptical, 11-12 hour period. 

Due to the high eccentricity of this orbit, the spacecraft has a long dwell time over the 

area of interest. 

n„= 2.274*10"" rls 

Figure 2: Orbit Diagram 

The inclination of this orbit is chosen such that perigee will remain fixed over Antarctica. 

In order to provide continuous coverage, at least three satellites need to be appropriately 

phased. Table 1 lists the characteristics of this orbit. 

Title 

Earth's Gravitational Constant 

Inclination 

Radius of Perigee 

Symbol/Equation Quantity 

398601 km7secz 

63.5C 

7378.15 km 

Radius of Apogee 42164.17 km 



Semi-Major Axis V    + V pa 
a =  

2 

24771.16 km 

Eccentricity T   —V 
e=a     p 

ra+rp 

0.70215 

semi-latus rectum p = a(\-e2) 12558.62 km 

period n=W? 38799.86 sec 

Table 1: Orbit Parameters 

Of particular interest is the orbital angular velocity of the spacecraft at any time, t. These 

values will be calculated in discrete, ten-second intervals and stored as deterministic 

values in the on-board computer. The radius, as a function of time, is given by 

r(t)-. 
l + e cos(v(t)) 

(1) 

The true anomaly, v, is just the angle measured from perigee to the satellite's current 

position. Taking both the first and second derivatives [Ref. 1], the following expressions 

are obtained 

r(t)=   —esm(v(t)) 
\P 

(2) 

r(t) = J—ecos(v(t))v(t) 
\P 

(3) 

The rate of change of true anomaly, v, is just the orbit angular rate of the satellite. Both 

the orbital angular rate and the orbital angular acceleration can be found in [Ref. 1]. 

They are given by 



*(0 = J--7T(1 + ecos0'W) Xp r(t) (4) 

v(t) = - lP r(ty 
-e sin( v(t))(l + e cos(v(t)))+ re sin(v(t))v(t) (5) 

In order to solve for both the true anomaly and radius at any time, t, it is necessary to 

convert the above equations into two first order differential equations.   If the following 

variable substitutions are made: yx = r, y2 = r, y3 = v, and y4 = v, then they can be 

substituted in Equations (1) through (5). Once the substitution is made, the resulting first 

order differential equations can be integrated using a Runge-Kutta integration method. 

The integration was performed using MATLAB 5.2, and the results are shown in Figure 

3. 
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Figure 3: Orbital Characteristics 

The simulation begins at perigee and continues for an entire orbit. As can be seen, the 

orbital angular velocity is nearly constant as the spacecraft dwells near apogee. 



B.        DISTURBANCE TORQUES 

At first glance, it may seem that the vacuum of space is a benign environment. 

However, this is not true. External disturbance moments will cause errors in the 

spacecraft's attitude. These errors however, will be kept within the required pointing 

limits if the attitude control system is properly designed. The four major disturbance 

moments worth consideration are 1) Solar Pressure 2) Gravity Gradient 3) Magnetic 

Moment and 4) Aerodynamic. While the last three disturbance moments are significant 

at perigee, they are insignificant at apogee. Since the satellite will spend the majority of 

its time at or near apogee, the disturbance torques will be modeled, for this case. As a 

consequence, both magnetic and aerodynamic moments will be discounted. For design 

simplicity, it will be assumed that the solar pressure moment can be modeled as a 

constant torque about each body axis. Although gravity gradient moments are relatively 

insignificant at apogee, they can be incorporated into the satellite equations of motion 

with minimal effort. These moments, derived in Appendix A, were found to be 

'«x=3ßV(/, -',) 

«-302*fc -h) 

^=0 

(6) 

Since lz is less than both lx and iy, this satellite will be gravity gradient 

friendly. This could become important during safe mode operations. Although this 

spacecraft is gravity gradient friendly, the symmetry about the roll and pitch axes 

compromises yaw stability. As long as the attitude control system remains operational, 

however, yaw stability will not be a factor. 



IV.      SATELLITE DYNAMICS AND KINEMATICS 

There are many types of transformation methods, the most popular are: direction 

cosine matrices (DCM), euler angles, and quaternions. Quaternions are popular since 

they involve only a single rotation about an eigen-axis. This greatly reduces the 

cumbersome mathematics that is characteristic of the other methods. However, if small 

angle approximations are made and if second order terms are set to zero, then DCM's are 

easy to employ; they will be used in this analysis. Transformations from one frame to 

another are performed to facilitate calculations. For example, the latitude and longitude 

' of stars in the star catalog have all been programmed within a celestial frame, but 

measurements will be made in the body frame. Therefore, proper attitude determination 

relies on a simple transformation. 

Satellite dynamics refers to the motion of the body when subject to both internal 

and external disturbance moments. The assumption has been made that the spacecraft 

will rotate about its principal moments of inertia. This is a reasonable assumption since 

the off-axis inertias can be significantly reduced by strategic placement of satellite 

components and hardware. 

A        REFERENCE FRAMES 

In the field of attitude control, it is often required to express an inertial quantity as 

a body frame quantity. For example, the inertial angular velocity derived from the Euler 

moment equations must be expressed in body coordinates and then integrated to get the 

Euler angles. Three important reference frames are used in the derivation of equations of 

motion: 1) body frame 2) orbital frame and 3) inertial frame. The origin of these three 

frames will all be located at the spacecraft's center of mass. In the orbital reference 

frame, the z-axis points at the center of the Earth, the x-axis points in the satellite's 

direction of motion, and the y-axis is normal to the orbit plane, completing the right-hand* 

set. The body frame is attached to the spacecraft where the Euler angles represent the 

deviation of the body frame from the orbital reference frame. On-board sensors measure 

these Euler angles. The inertial frame remains fixed in Earth space such that the inertial 

y-axis coincides with the orbital y-axis. An additional reference frame alluded to earlier 



is the celestial frame. The z-axis of this frame points north and the x-axis points in the 

direction of the vernal equinox. Although the x-axis precesses (very slowly), it assumed 

to be fixed in space. 

Figure 4: Orbital Reference Frame 

B.        STATE SPACE EQUATIONS OF MOTION 

The equations of motion derived in Appendix C completely describe the motion 

of the satellite when subjected to both internal and external disturbance moments. If the 

body accelerations are solved for in Equation (55) the following result is obtained 

<t> = 
-4ci2(iy -iz)/>+nhy0-n(-ix +iy -iz)j,+hyy,-hze+ixäy, Tspx+^K 

-m2{ix-i2)9-hxij,-cihzV,-cihx</>+h2 Tspy +',« (7) 

10 



w = 
-n2(-ix+iy\s+nhyV,-n(ix-iy+i2)t,+hx9-hJ-iznt Tspz~^x 

For computational reasons, it is desirable to reduce these second order equations to first 

order equations by making the following state variable substitutions 

x = [(j)   <j>   0   6   y/   w]T 
(8) 

With these definitions, we can express the satellite dynamic equations into the following 

matrix form 

x = Ax + Bit (9) 

A is the plant matrix and it is given by 

A= 

-4tf(/,-/r)-rf^ 
0 

4 
0 

h 
0 

0 

0 

± 
4 
0 

0 

0 

± 
4 

0 1 

-3^(4-4)   0 

4 
0 0 

n 

0 

4 
0 

HQb4+4-4H 

-Oj^+Q-hy 

4        4 

4 
0 

A 
4 
l 

(10) 

B is the control matrix given by 

B = 

"o 0 o" 
1 0 0 

0 0 0 

0 1 0 

0 0 0 

0 0 1_ 

(11) 
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u is going to be the input reaction wheel control, and it will have the following form 

u = -Fx + u„ (12) 

F will be the PD controller gain matrix and ud will represent the summation of the solar 

pressure moments and the internal reaction wheel moments. F and ud are given by 

F = 

h 
0 

0 

0       0       0       0 

y 

0 

yy 

h 
0 

0      0 

I, 

(13) 

Uj = 

Tspx+0.hz 

Tspy+Iy^ 

Tspz -&K 

(14) 

Substituting Equation (14) into Equation (9), the following equation of motion is 

obtained 

x = {A-BF)x + Bud (15) 

Equation (15) is equivalent to the equations of motion derived in Appendix C. 
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V.        STAR SENSOR 

Star sensors were chosen because of their high accuracy and because of their 

ability to determine yaw. Earth horizon sensors can sense only roll and pitch. Even 

though sun sensors can measure yaw, four or more would be required for continuous 

information; furthermore, they become ineffective while in Earth's umbra. Historically, 

star sensors have been used only to update gyroscopic drift estimates, but recent 

advancements in star sensor technology make it possible to consider practical 

implementations of attitude determination based solely on star sensor data [Ref. 8]. 

A. STAR CHARACTERISTICS 

For the purpose of this simulation, it will be assumed that there is a uniform 

distribution of stars in the celestial sphere, such that one star will be present in the sensor 

FOV at all times. Each star can be classified according to its magnitude and its spectra. 

The magnitude refers to a star's brightness as seen from Earth. The magnitude of Vega, a 

bright star in the constellation Lyra, has been assigned a value of zero. All other stars are 

referenced to Vega logarithmically. As an example, the brightest star outside our solar 

system, Sirius, has a magnitude of-1.6. Astronomers can distinguish different stars, not 

only from their magnitude, but also from their unique spectral characteristics. There are 

seven principal spectral categories: O, B, A, F, G, K, and M and these categories are 

further subdivided into ten more subgroups, from 0 to 9. [Ref. 3] 

B. HOW A STAR SENSOR WORKS 

There are three important phases in the determination of attitude using star 

trackers 1) star identification 2) tracking 3) processing [Ref. 3]. When a satellite 

completes an orbit, the star sensor will have imaged stars that make up a ring of the 

celestial sphere. The width of this celestial ring is a function of the sensor FOV. 

Although accuracy will increase with a small FOV, the time between observations will 

increase. Once the FOV is decided upon, the celestial latitudes and longitudes of chosen 

stars, within the sensor celestial ring, are recorded into the star catalog. Therefore, at any 

point in the orbit, the star sensor will expect to see a certain star. Identification of this 

13 



star is made if it falls within a circle of tolerance; if two stars appear in this circle, 

magnitude and spectral characteristics will separate the two. Once the star is identified, it 

is tracked until it leaves the FOV. While the sensor is tracking an identified star, 

however, the measured latitude and longitude is compared with the actual latitude and 

longitude. This error is sent, via the Kaiman filter, to the appropriate controller in the 

form of a voltage signal, where a corrective torque is subsequently applied. 

C.        STAR SENSOR CHARACTERISTICS 

The star sensor model used in this simulation has been designed in accordance 

with the specifications outlined in Chapter II. Further assumptions have been made for 

the sake of completeness, and they will be, in part, consistent with current technology. 

Technology Charged Coupled Device (CCD) 

FOV 10°xl0° 

Accuracy -10 arcsec 

# Stars in Catalog 4000 

Sampling Rate 0.1 Hz (current technology is faster) 

Noise 4 arcsec (magnitude=6) • 

Solar Exclusion Angle 30° w/sun shade 

Table 2: Star Tracker Characteristics 

The noise level is inherent to the star tracker and it is treated as a zero-mean, Gaussian 

white sequence. 

D. STAR SENSOR OPERATION 

Three-axis attitude determination requires two separate line of sights (LOS) with 

angular separation near 90° for increased accuracy. In this simulation, the optical axis of 

each star sensor will be aligned with the body axes. At each discrete time step a star 

sensor will be selected at random for attitude determination. Although this sequence of 

events permits only one LOS per time step, attitude is readily determined over 

14 



consecutive time steps. Since only one star will be in the sensor FOV at any particular 

time, measurements can only be made about two axes. Table 3 summarizes the angles 

that can be sensed by each star sensor. 

Star Sensor (Direction of Optical Axis) Angles Sensed 

Roll Pitch, Yaw 

Pitch Roll, Yaw 

Yaw Roll, Pitch 

Table 3: Star Sensor Measurements 

15 
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VI.      DISCRETE KALMAN FILTER 

A six state discrete Kaiman filter has been chosen to estimate both position and 

rates from noisy star sensor data. The Kaiman filter that will be used in the simulation is 

represented by 

**+l =**JC*+AtMt+Wi 

zk =mk+vk 

(16) 

The white sequence, wk, for the plant has a covariance, Q, while the sensor noise, vk, has 

a covariance, R. Noise from the star sensor is affected by the magnitude of the star; a 

bright star is noisier than a dim star [Ref. 4]. The sensor noise covariance is defined as 

follows 

^=4^] (17) 

Table 4 is a summary of all the matrices and their respective dimensions that will be used 

in the estimation process. 

Symbol Definition Size 

** state vector 6x1 

** state transition matrix 6x6 

A, deterministic weighting matrix 6x3 

"* deterministic forcing function 3x1 

wk plant white noise sequence 6x1 

Qu plant noise covariance matrix 6x6 

Zk measurement vector 3x1 

Hk 
feedback sensitivity matrix 3x6 

vk 
sensor white noise sequence 3x1 

17 



Rk 
sensor noise covariance matrix 3x3 

Pk error covariance matrix, E (xk -x\xk -X) (accuracy of estimate) 
6x6 

*k optimal estimate of xk at time, tk, based on current measurement 6x1 

H estimate of xk at time, tk, just prior to measurement 6x1 

Table 4: Kal man Filter Definitions 

A.        DERIVATION OF THE Q MATRIX 

Solving for the covariance of the plant noise is no trivial matter. In this 

simulation, the Q matrix will vary with each time step. The formal definition of the plant 

noise covariance is given by 

a =4****] (18) 

It can be shown that Equation (18) must satisfy the following matrix differential equation 

[Ref. 5] 

Qk=AaugQk+QkA
T

au-+BWB (19) 

The augmented A matrix is defined from Equation (15) as the quantity, A-BF and the 

power spectral density matrix associated with the forcing function ü is denoted by W. 

The solution to Equation (19) is greatly simplified for the time invariant case. It proceeds 

as follows 

a = 
~Aaug    BWB' 

0 BT 
At (20) 

By taking the matrix exponential of Equation (20), the following result is obtained 
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ß- x~lQk 
T 

X 
(21) 

The upper left partition can be neglected for this analysis. The plant noise covariance 

matrix can now be determined by multiplying the upper right partition of Equation (21) 

by x ■ This method was first formulated by Van Loan in 1978 and can be found in [Ref. 

5]. 

B. KALMAN ALGORITHM 

Before entering the Kaiman filter loop, an initial estimate, *ö, and its error 

covariance, P0~, must chosen. For this simulation, these initial conditions were chosen to 

be 

0 

0 

*0   = 
0 

0 

0 

_0_ 

"l    0   0   0   0   0 

0    10   0   0   0 

^o" = lO"12 Ö   0    1    0   0   0 

0   0   0    10   0 

0   0   0   0   10 

0   0   0   0   0   1 

(22) 

The '-' superscript will represent the predicted estimate while the !A' notation denotes 

estimation. The discrete Kaiman filter is, in essence, just a computer algorithm that 

derives optimal estimates from discrete measurements. Although there are different 

forms of the discrete Kaiman filter, the most fundamental form starts with the Kaiman 

gain calculation, which is given by 
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Gk=PkH
T

k{HkPkH
T

k+Rk)-
x (23) 

The value of this gain matrix will vary with each time step. Next, it is required to update 

the estimate using star sensor data, and also it is required to determine the accuracy of 

this new estimate. The equations are given as 

xk =xk +Gk\zk-Hkxk) (24) 

Pk={l-GkHk)Pk (25) 

Figure 5, shown below, illustrates the recursive nature of the discrete Kaiman filter. A 

favorable characteristic of any recursive filter is that there is no need to store past 

measurements [Ref. 6]. 

Project Estimate 
and the Corresponding 

Error Covariancc 

Enter Initial Estimate 
Enter Initial Error 

Covariancc 

Compute the Kaiman 
Gain 

Receive Star Sensor 
M casurcments 

• 

Compute Error 
Covariancc for current 

estimate 

Figure 5: Discrete Kaiman Filter Loop 

Compute Estimate OUTPUT TO 
PD CONTROLLER 
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Equation (24) is the actual output of the discrete Kaiman filter. It estimates both attitude 

angles and attitude rates given only star sensor angle information. Not only does it derive 

rates, but it also mitigates sensor noise effects. Lastly, it is necessary to project ahead 

and estimate the state for the next time step. The predictive equations are as follows 

**+i =®kXk+Akük (26) 

^i=V**I+et (27) 

It is interesting to note that in Equation (26), the deterministic forcing function has been 

included. This forcing function consists of known reaction wheel moments, which can be 

measured by the reaction wheel motor assembly. If this deterministic term is not 

included, the rate estimator is unable to accurately estimate satellite-rates near perigee. 

For the purpose of analysis and proper tuning, it is helpful to look at the time- 

varying nature of both the Q and P matrices over a period of one orbit. Since the off- 

diagonal elements of these matrices are small, only the diagonal elements will be 

examined. These elements are shown in Figure 6 and Figure 7. 
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Figure 7: Error Covariance Elements 

If Q is decreased, the filter will have a tendency to track the predicted estimate. 

On the other hand, if Q is increased, the filter will track the measurements. It is 

important to find the right balance because if Q is too low, then the filter will have a hard 
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time tracking when or if the satellite maneuvers, but if Q is too high, pointing accuracy 

will suffer from sensor noise effects. The results of the Kaiman filter will be shown in 

Chapter VII. 
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VII.     PROPORTIONAL PLUS DERIVATIVE CONTROLLER 

A PD Controller was chosen because of its simplicity. Although this type of 

controller does not reduce or correct steady state errors, the gains can be adjusted to 

ensure the error is within acceptable limits. A separate controller will be assigned to each 

reaction wheel. 

A.        CONTROL LAWS 

Many types of control laws are available which can conceivably satisfy this 

satellite's pointing requirements. Some common control laws are 1) proportional 2) 

proportional plus derivative 3) proportional plus integral plus derivative and 4) optimal. 

Each of these controllers has its own unique characteristics; however, as long as the 

controller maintains proper spacecraft attitude, exotic controllers will not be required. In 

fact, it will be shown that the gains of a simple PD controller can be adjusted to minimize 

overshoot and settling time. Each of the reaction wheels in this spacecraft will have its 

own PD controller and they are represented as 

ky=kv0 + ky0 (28) 

K =^vz¥ + kzi// 

These control laws are expressed as the rate of change of reaction wheel angular 

momentum, or reaction wheel torque, and they are part of the feedback loop. As can be 

seen, these internal torque equations are a function of the measured Euler angles and 

rates. The gain constants are found by substituting Equation (28) into Equation (55), 

which is located in Appendix C. If the resulting set of equations is completely de- 

coupled, and the Laplace transform is taken, the following result is obtained 
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Tx(s)       2    kvx       4Q2(Iy-Ix)-Qhy+kx 

h h 

0(5) Iy 

Ty(s) * 3Q2 (Ix-Iz) + ky 
s   +—-s + - 

(29) 

/, /, 

T2{°)      2    K„      Q2(-Ix+Iv)-Qhy+kz 
s   +-^s + - 

For this particular analysis, it is assumed that the orbital angular velocity is locally 

constant. The objective is to determine.suitable position and rate feedback-gains that will 

increase spacecraft robustness. The nominal characteristic equation for any second order 

system has the following form 

A(s) = s2+2con£ + a)Z (30) 

The natural frequency is denoted as a>n and £" is the damping factor, which will be 

chosen to be one. Each of the denominators in Equation (29) will be equated to Equation 

(30). Solving for the coefficients, the result is two equations and three unknowns. The 

third equation makes use of the final value theorem [Ref. 7], and it is given by the 

following 

/(oo) = lim/(0 = limsF(s) (31) 
(-»00 S-»0 

The pointing requirements for this satellite require a steady state pointing accuracy of 

0.1° about each axis. By applying the final value theorem to Equation (29) and assuming 
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that the external disturbance torques can be approximated as a step input, position 

feedback gains can be determined from the following equations 

= Tx-4Q2(Iy-Ix^ss+Qhy^ss 

T-3Q2(IX-Iz)ess 

*,=- e (32) 

,  _T2-n2(-ix+iy)Wss+nhyy, 
fo    — - 

Vs. 

The 'ss' subscript denotes steady state and the design torques represent a worst case 

scenario. It can be seen from Equation (32) that the position feedback gains are not 

constant; they will vary as a function of orbital position. The natural frequency for roll, 

pitch and yaw can now be determined by taking the square root of the last term in the 

denominator in Equation (29). Once this is found, the velocity feedback gains can be 

calculated from the following expressions 

Kx=2a>nxIx 

kvy=2conyIy (33) 

*vz =2»ra/2 

In a similar manner to the position feedback gains, the velocity feedback gains also vary 

with time. Figure 8 and Figure 9 each depict the time varying nature of the PD gains over 

one orbit, specifically during perigee. As expected the pitch and pitch rate gains are 

much higher than the roll and yaw gains. 
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Figure 9: Controller Rate Gains 

In the above analysis, many assumptions were made in order to achieve suitable 

gains, but as long as these gains minimize overshoot and decrease settling time, then they 

are acceptable. For clarification, the design disturbance torques used in Equation (32) 
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represent the aggregate, worst-case expected torques, both internal and external. If the 

magnitude of this torque is exceeded, then the pointing accuracy of this model will suffer. 

For example, the worst-case torque about the y-axis is estimated to be higher than the 

torques about the other two axes since the reaction wheel will have to exert a 

considerable torque at perigee, in order to keep the spacecraft nadir pointing. 
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VIII.   RESULTS 

The results of the simulation prove that it is possible to design a satellite control 

system without rate gyroscopes. Figure 10 is a plot, using only star trackers, of satellite 

attitude over a period of one orbit. Although it is difficult to see from this figure, both 

actual and estimated satellite attitude about all three axes have been plotted. 
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Figure 10: Satellite Attitude 

In order to analyze Figure 10, a close-in look at a small portion of each curve is shown in 

Figure 11, Figure 12, and Figure 13. If the star sensors were ideal, the measurements 

(triangles) would all fall on the actual attitude, but since there is noise, they are randomly 

dispersed. The non-measurements in Figure 11 occur when the x-axis star sensor is 

selected; roll angles can not be sensed, as a result, they are assigned a value of zero. The 

Kaiman filter makes a prediction in this case. It can be seen from the figures below that 

the Kaiman filter cuts through the noise and tracks the attitude effectively. As alluded to 

earlier, if Q is decreased, the estimates will be weighted in favor of the predicted estimate 

and if Q is increased the estimates will be weighted in favor of the measurements. 
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Roll Response Snapshot with Observations 
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Yaw Response Snapshot with Observations 
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Figure 13: Yaw Response with Measurements 

Attitude rates are estimated from star tracker data. These rates traditionally come 

from rate gyroscopes, but as seen in Figure 14, the estimated rates are very accurate. 
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Similar to Figure 10, two curves are actually plotted in Figure 14. Figure 15 is a close-in 

look that shows that the estimate is accurate to within 10" rad/s. No measurements are 

shown since star sensors can only measure angles, not rates. 
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Figure 15: Actual and Estimate Attitude Rates 

The output of the Kaiman filter is fed into the PD controllers. The torque applied 

to the reaction wheels over a period of one orbit is shown in Figure 16. As expected, 

considerable torque is applied to the pitch wheel at perigee. The angular momentum of 

the pitch wheel at perigee is therefore also high; this can be seen in Figure 17. 
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Figure 17: Reaction Wheel Momentum 

If there is an attitude error about any axis, internal torques will arise due to the cross 

coupling of reaction wheel angular momentum components. That is why, in Figure 16, 
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the magnitude of the torque spikes in both roll and yaw at perigee. The reaction wheels 

work against each other until the satellite achieves the proper attitude. 
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IX.      SUMMARY AND CONCLUSION 

A. SUMMARY 

In summary, the equations of motion that were derived in Appendix A were 

transformed into a state space equation. This state space equation was discretized 

resulting in a difference equation. This difference equation, the plant model, consisted of 

a state transition matrix and a deterministic control matrix. Star trackers provided two- 

axis measurements to the Kaiman filter at a rate of 0.1 Hz. The output of the filter was 

fed into three PD controllers, which counteracted disturbance torques. 

B. CONCLUSION 

From the previous chapter, it was proven that a discrete Kaiman filter is effective 

in the estimation of body rates from noisy sensor data. The results show that rates can be 

estimated to within 10"7 r/s, which is as good as any gyroscope. These results, however, 

are based on small angle approximations. The next step is to develop a quaternion for the 

large angle acquisition phase of the spacecraft. In order to handle the non-linear nature of 

the quaternion, an extended Kaiman filter will have to be implemented. 

In this simulation, everything was calculated in ten second intervals. An 

additional loop needs to be included in the control flow diagram that will speed up the 

rate updates. A star does not have to be identified in order to calculate rates, it only needs 

to be identified for position updates. Furthermore, processing delays were not included 

in this analysis. The satellite was modeled as a rigid body. Further studies will need to 

study the dynamics of the solar arrays, antennas and other appendages. 

.   The technology for rate estimation, using only star trackers for attitude updates, 

has reached the level where it is more feasible than using both gyroscopes and star 

trackers for attitude determination. 
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APPENDIX A: KINEMATICS 

Three reference frames will be used in the derivation of equations of motion 1) 

Inertial 2) Orbital and 3) Body. Transformation between coordinate systems will be done 

using direction cosine matrices (DCM). These matrices are given by 

CW = 
1 0     o" 

0 c<(>    s<f> 

0 -s</>   c<f> 

C(0) = 

cd   0 -s6 

0     1 0 

s9   0 c6 
(34) 

C{y) 

cy/ siy   0 

-Slf/ cy   0 
0 0    ,1 

The orbital reference frame is oriented such that the x-axis points in the direction of the 

velocity vector, the z-axis points towards the center of the Earth and the y-axis completes 

the right-hand set. It is desired to keep the body frame aligned with the orbital frame. 

The transformation from the orbital reference frame to the body frame is given by the 

following 3-2-1 transformation 

bC°=C{¥)C{G)C^) = 

cdcy/ cQsi/f -sd 

-cfoty + s<f>s6cy/     c<j>c\i/ + s<j>sOsyf     s(j>c9 

sifisyz + cfodcy/     -s$cy/ + cfoßsy/    cdcij> 

(35) 

The orbital reference frame rotates at a rate of Q(t) with respect to the inertial frame, or 

-Qo-, (36) 
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In order to perform angular momentum calculations, it is required to express the inertial 

angular velocity in body coordinates. The inertial angular velocity is represented by 

i-b    i -o , o-b CX1\ CO   — CO   +   CO \J I) 

The angular velocity of the orbital frame with respect to the inertial frame, expressed in 

body coordinates is 

«©I =-bC°Qd2 (38) 

The angular velocity of the body frame with respect to the orbital frame, expressed in 

body coordinates is 

°ä>b
b = fa + C(0C(0)fl52 +bC V<53 (39) 

The n2 unit vector belongs to an intermediate reference frame. If Equation (38) and 

Equation (39) are substituted into Equation (37), the following result is obtained 

iäb =(<j>-Cl y/jby +(0- Q)b2 +{y/ + Q0)b3 (40) 

Equation (40) is a simplified expression where small angle approximations were used and 

second order terms were neglected. 
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APPENDIX B: GRAVITY GRADIENT TORQUES 

In a Molnyia orbit, gravity gradient moments will be greatest at perigee. The 

gravity gradient torque is given by [Ref. 1] 

fgg = \?xäzdm (41) 

The gravitational acceleration is 

ä
g=-GM®7§±JJ (42) 

R is the distance to the center of mass of the satellite measured from the center of the 

Earth and it is given by 

K=Ro, (43) 

Equation (43), expressed in body coordinates is 

Rb=
bC°R0 (44) 

For now, Rb will be written as 

Rb=Xbx+Yb2+Zbi ' (45) 

Taking the cross product 

FxR = (yZ - zYfa +(zX- xZ)b2 + (xY - yX)bz (46) 

From the binomial theorem, the following expression is obtained 
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\R + r\    =-7-3 i-  (47) 
I        I        R3 R5 

It can be shown that the orbital angular velocity is just 

Q-J2Ä. (48) 

Equation (46), Equation (47), and Equation (48) can be substituted into Equation (41) to 

get the following expression 

r^=-3Q2[^(/,-/z)-^-/,z] 

Tggy = -3Q2 [9(1x -I2) + 0Ixy+1„ ] (49) 

Tggz=3n2wX2 + 0iyz) 

These three equations were derived using small angle approximations and neglecting 

second order terms. 
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APPENDIX C: DERIVATION OF EQUATIONS OF MOTION 

When determining the attitude of a satellite, it is helpful to translate everything 

into the body coordinate system since on-board sensors will detect errors with respect to 

the body frame. Transformations are done by a variety of techniques, but the most 

elementary method is known as the direction cosine matrix. From Appendix A, it was 

shown that 

,-56=^-n^)&,+((9-Q)b2+(jjr-n^)b3 (50) 

This result was obtained using small angle approximations where the symbol ^ 

represents the error in roll, 6 represents the error in pitch, and y/ represents the error in 

yaw. The total spacecraft angular momentum can be separated into two vectors: 1) 

angular momentum of the spacecraft body and 2) angular momentum of the reaction 

wheels, and it is given by the following expression 

H = Hb+Hw (51) 

Assuming cross products of inertia are negligible, the following expression is obtained 

Hb=l'a>b (52) 

It is important to note that when calculating the angular momentum of the satellite about 

its center of mass, inertial angular rates must be used rather than body rates. Substituting 

Equation (50) and Equation (52) into Equation (51), total spacecraft angular momentum 

is found to be 

H = (lj-IxQys + hx)b]+(ly9-Iyn + hy)b2+{l2ij, + I2n0 + hz)b3 (53) 

The following relation will be used to determine the Euler moment equations [Ref. 8] 
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£ H = £ HVä>bxH (54) 
dt dt 

If second order terms are neglected and gravity gradient moments derived in Appendix B 

are incorporated, it can be shown that the Euler equations for this spacecraft are just 

Tx =IJ+4n2(ly-Iz)0-nhy0-nhz+Q.(-Ix+Iy-I2)y-hyyr + hJ-IxnVs + hx 

Ty=Iy9 + 3Q2{lx-I2)0 + hxv + Qh2V/ + QhJ-hJ-Iyn + hy (55)   . 

T2 =i2y/+n2(-ix+iyy-nhyy+nhx+n(ix-iy+iz)j>-hx0+hy0+izn0+hz 

These equations completely describe the motion of the spacecraft when subject to 

external disturbance torques. The rate of change of angular momentum of each reaction 

wheel will be used to counteract the disturbance moments, thereby maintaining the 

required pointing accuracy. Solving for the Euler angles, however, is no trivial task; all 

three differential equations are second order and coupled together. If the cross products 

of inertia are not negligible, the equations of motion become 

TxX =Tx+(d-n-3Q2&)Ixy+(Q.2w + w + Q^)IX2+(-2Qd-2n2)Iy2 

ryl =Ty+(-2Qy+2n20+0-nif/)ixy+3n2ixz+(2Ja-n2
V/+ip+n<f>)iy2 (56) 

Tzl=Tz +(2Q0-Q.2)Ixy +(-2n20 + t-nv)Ixz +(0-Qi-3Q.20)Iyz 
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APPENDIX D: MATLAB CODE 

%%%%%%%%%%%%%%%%MAIN PROGRAM %%%%%%%%%%%%%%%%% 

% 

% This code simulates a 3-axis stabilized spacecraft in a Molnyia orbit. The 

% satellite is designed to be nadir pointing to within 0.1 degrees about each 

% axis. The simulation starts with the satellite at perigee and progresses in 

% discrete, ten second time intervals for an entire orbit. Three orthogonal 

% star sensors, each aligned with the body axes, sense attitude errors caused 

% by various disturbance torques. Due to limited onboard processing 

% capabilities, only one star sensor can make an observation at each time step; 

% this star sensor is selected at random. These measurements, however, are 

% corrupted by additive white noise. A six-state discrete Kaiman filter is 

% used to both diminish sensor noise effects and estimate rates. The data from 

% the Kaiman filter is then fed back to three independent, proportional plus 

% derivative controllers thus completing the control loop. This code calls three 

% functions: ssorbit, ssgains, and ssmatrix. 

% 

% 

% 

Ix=25000; 

Iy=25000; % Moments of inertia 

Iz-15000; 

% 

mu=398601; 

rp=7378.15; 

ra=42164.17; 

a=(rp+ra)/2; 

e=(ra-rp)/(ra+rp); 

p=a*(l-eA2); 

% 

Tspx=le-5; 

% Gravitational constant 

% Radius of perigee 

% Radius of apogee 

% Semi-major axis 

% Eccentricity 

% Semi-latus rectum 
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Tspy=le-5; 

Tspz=le-5; 

% 

rO=rp; 

v0=sqrt(2*mu/r0-mu/a); 

omegaO=vO/rO; 

hyO=-omegaO*Iy; 

% 

tO=0; 

dt=10; 

tf=50000; 

tspan=[tO:dt:tf]; 

yo=[rO 0 0 omegaO]; 

options = odeset('RelTol',le-6); 

[t,y]=ode45('ssorbit',tspan,yo,options,e,mu,p); 

% 

s=size(t); 

kmax=s(l,l)+l; 

% 

x=zeros(6,kmax); 

xkk=zeros(6,kmax); 

xkkm 1 =zeros(6,kmax);. 

z=zeros(2,kmax); 

zx=zeros( 1 ,kmax); 

zy=zeros(l ,kmax); 

zz=zeros(l ,kmax); 

h=zeros(3,kmax); 

Tc=zeros(3 ,kmax); 

time=zeros(l ,kmax); 

P=le-12*eye(6); 

h(:,l)=[0hy0 0]'; 

% Solar pressure moments 

% Radius at t=0 (perigee) 

% Velocity at t=0 

% Orbital angular rate at t=0 

% RW angular momentum at t=0 

% Time span 

% Initial conditions 

% Accuracy of convergence 

% Integration 

% Plant array 

% Estimation array 

% Prediction array 

% Measurement array 

% RW angular momentum array 

% RW torque array 

% Sampling time array 

% Initial error covariance 

% Initial RW angular momentum 
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% 

% 

% 

fori=l:kmax-l 

% 

% 

% 

[F,k,Wo]=ssgains(y(i,:)',h(:,i),Ix,Iy,Iz); % PD controller gains 

[A3,Wdot]-ssmatrix(y(i,:),,h(:,i),mu,p,e,Ix,Iy,Iz);% Plant and control matrices 

% 

Aaug=A-B*F; 

[phik,delk]=c2d(Aaug,B,dt); 

ud=[(Tspx+Wo*h(3,i))/Ix Tspy/Iy+Wdot... 

(Tspz-Wo*h(l,i))/Iz]'; 

W=le-14*diag([.01 1 .01]); 

Aq=[-Aaug B*W*B';zeros(6) Aaug']*dt; 

Bq=expm(Aq); 

phiq=Bq(7:12,7:12)'; 

Q=phiq*Bq(l:6,7:12); 

c=rand; 

'o 

ifc<=3333 

N=2e-5; 

R=NA2*eye(2); 

H=[0 0 1 0 0 0;0 0 0 0 1 0]; 

z(:,i)=H*x(:,i)+N*randn*ones(2,l); 

zy(i)=z(l,i); 

zz(i)=z(2,i); 

elseif 0.3333 & c<=6666 

N=2e-5; 

R-NA2*eye(2); 

H=[l 0 0 0 0 0;0 0 0 0 1 0]; 

% Augmented plant matrix 

% Discrete A and B matrices 

% Disturbance torques 

% Power spectral density 

% Plant noise covariance 

% Random number generator 

% 1 STAR SENSOR/TIME STEP 

% Roll sensor noise 

% Roll sensor covariance 

% Pitch & yaw observations 

% Measurement with sensor noise 

% Observation in pitch 

% Observation in yaw 

% Pitch sensor noise 

% Pitch sensor covariance 

% Roll & yaw observations 
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z(:,i)=H*x(:,i)+N*randn*ones(2,l); % Measurement with sensor noise 

zx(i)=z(l,i); % Observation in roll 

zz(i)=z(2,i); % Observaton in yaw 

else 

N=2e-5; % Yaw sensor noise 

R=NA2*eye(2); % Yaw sensor covariance 

H=[100000;00 1'000]; % Roll & pitch observations 

z(:,i)=H*x(:,i)+N*randn*ones(2,l); % Measurement with sensor noise 

zx(i)=z(l,i); % Observation in roll 

zy(i)=z(2,i); % Observation in pitch 

end 

% % 3 STAR SENSOR/TIMESTEP 

% Nx=2e-5; 

% Ny=2e-5; % Nominal star sensor noise 

% Nz=2e-5; 

% Rx=4e-10*eye(2); 

% Ry=4e-10*eye(2); % Sensor noise covariance 

% Rz=4e-10*eye(2); 

% Hx=[0 0 1 0 0 0;0 0 0 0 1 0]; % x-axis star sensor 

% Hy=[l 0 0 0 0 0;0 0 0 0 1 0]; % y-axis star sensor 

% Hz=[l 0 0 0 0 0;0 0 1 0 0 0]; % z-axis star sensor 

% 

% 

% 

x(:,i+l)=phik*x(:,i)+delk*ud; % Plant 

Gx=P*Hx'*inv(Hx*P*Hx'+Rx); % Initial Kaiman gain 

% zx(:,i)=Hx*x(:,i)+Nx*randn*ones(2,l); % Noisy y and z measurements 

% xldcl^kkml(:,i)+Gx*(zx(:,i)-Hx*xkkml(: ,i)); % Initial estimate 

% Pl=(eye(6)-Gx*Hx)*P; % Initial error covariance 

% 

%      Gy=Pl*Hy'*inv(Hy*Pl*Hy'+Ry); 

%     zy(:,i)=Hy*x(:,i)+Ny*randn*ones(2,l); 

%     xkk2=xkkl+Gy*(zy(:,i)-Hy*xkkl); 

% Updated Kaiman gain 

% Noisy x and z measurements 

% Updated estimate 
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%     P2=(eye(6)-Gy*Hy)*Pl; 

% 

%     Gz=P2*Hz'*inv(Hz*P2*Hz'+Rz); 

%     zz(:,i)=Hz*x(:,i)+Nz*randn*ones(2,l); 

%     xkk(:,i)=xkk2+Gz*(zz(:,i)-Hz*xkk2); 

%    Pk=(eye(6)-Gz*Hz)*P2; 

% 

x(:,i+l)=phik*x(:,i)+delk*ud; 

G=P*H'*inv(H*P*H'+R); 

xkk(:,i)-xkkml(:,i)+G*(z(:,i)-H*xkkml(:,i)); 

% 

ifzx(i)=0 

xkk(l:2,i)=xkkml(l:2,i); 

elseifzy(i)=0    • 

xkk(3:4,i)=xkkml(3:4,i); 

elseifzz(i)==0 

xkk(5:6,i)=xkkml(5:6,i); 

end 

% 

Pk=(eye(6)-G*H)*P; 

xkkml(:,i+l)=phik*xkk(:,i)+delk*ud; 

P=phik*Pk*phik'+Q; 

Tc(:,i)=-k*xkk(:,i); 

h(:,i+l)=h(:,i)+Tc(:,i)*dt; 

aeig(:,i)=eig(A); 

augeig(:,i)=eig(Aaug); 

% 

kx(i)=k(l,l); 

kvx(i)=k(l,2); 

ky(i)=k(2,3); 

kvy(i)=k(2,4); 

% Updated error covariance 

% Final Kaiman gain 

% Noisy x and y measurements 

% Final estimate 

% Final error covariance 

% Plant 

% Kaiman gain 

% Current estimate 

% No roll measurement case 

% Roll & roll rate prediction 

% No pitch measurement case 

% Pitch & pitch rate prediction 

% No yaw measurement case 

% Yaw & yaw rate prediction 

% Current error covariance 

% Future estimate 

% Future error covariance 

% Control torques (using xkk) 

% RW angular momentum 

% Eigenvalues, no controller 

% Eigenvalues, PD controller 

% Roll gain 

% Roll rate gain 

% Pitch gain 

% Pitch rate gain 
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kz(i)=k(3,5); % Yaw gain 

kvz(i)=k(3,6); % Yaw rate gain 

qll(i)=Q(l,l) 

q33(i)=Q(3,3) % Elements of Q 

q55(i)=Q(5,5) 

pll(i)=P(l,l); 

P33(i)=P(3,3); % Elements of P 

p55(i)=P(5,5); 

time(i+1 )=time(i)+dt; % Time steps 

% 

% 

% 

end 

% 

% 

% 

% 

% 

% 

%%%%%%%%%%%%%%%%%% RESULTS %%%%%%%%%%%%%%%%%%% 

r=1001:1101; 

tl=time(r); 

t2=time(l :kmax-l); 

% 

% 

% 

figure(l) 

subplot(221) 

plot(time,x(l,:)*180/pi) 

title('Roll Response using Ideal Gyros/Sensors') 

xlabel('Time (sec), Orbit=3.88(10A4)') 
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ylabel('Roll (deg)') 

axis tight 

grid; 

% 

subplot(222) 

plot(time,x(3,:)*180/pi) 

title('Pitch Response using Ideal Gyros/Sensors') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel(Titch (deg)') 

axis tight 

grid; 

% 

subplot(223) 

plot(time,x(5,:)*180/pi) 

title('Yaw Response using Ideal Gyros/Sensors') 

xlabel('Time (sec), Orbit=3.88(10A4)*) 

ylabel('Yaw (deg)') 

axis tight 

grid; 

% 

% 

% 

figure(2) 

subplot(221) 

plot(t,y(:,l)) 

title('Orbit Radius') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Radius (km)') 

grid; 

% 

subplot(222) 
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plot(t,y(:,3)*180/pi) 

title(True Anomaly') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('True Anomaly (deg)') 

grid; 

% 

subplot(223) 

plot(t,y(:,4)) 

title('Orbital Angular Velocity') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel(*Wo (rad/s)') 

grid; 

% 

% 

% 

figure(3) 

subplot(221) 

plot(time,Tc(l,:)) 

title('Roll Control Torque') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Torque (N-m)') 

axis tight 

grid; 

% 

subplot(222) 

plot(time,Tc(2,:)) 

title('Pitch Control Torque') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Torque (N-m)') 

axis tight 

grid; 
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% 

subplot(223) 

plot(time,Tc(3,:)) 

title('Yaw Control Torque') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('Torque (N-m)') 

axis tight 

grid; 

% 

% 

% 

figure(4) 

subplot(221) 

plot(time,h(l,:)) 

title('Reaction Wheel Momentum, hx') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('hx (Nms)') 

axis tight 

grid; 

% 

subplot(222) 

plot(time,h(2,:)) 

title('Reaction Wheel Momentum, hy') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('hy (Nms)') 

axis tight 

grid; 

% 

subplot(223) 

plot(time,h(3,:)) 

title('Reaction Wheel Momentum, hz') 
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xlabel(Time (sec), Orbit=3.88(iOA4)') 

ylabel('hz (Nms)') 

axis tight 

grid; 

% 

% 

% 

figure(5) 

subplot(221) 

plot(t2,kx) 

title('Roll gain') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('kx (N-m/rad)') 

axis tight 

grid; 

% 

subplot(222) 

plot(t2,ky) 

title('Pitch gain') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('ky (N-m/rad)') 

axis tight 

grid; 

% 

subplot(223) 

plot(t2,kz) 

title('Yaw gain') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('kz (N-m/rad)') 

axis tight 

grid; 
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% 

% 

% 

figure(6) 

subplot(221) 

plot(t2,kvx) 

title('Roll rate gain') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

_ylabel('kvx (N-m-s/rad)') 

axis tight 

grid; 

% 

subplot(222) 

plot(t2,kvy) 

title('Pitch rate gain') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('kvy (N-m-s/rad)') 

axis tight 

grid; 

% 

subplot(223) 

plot(t2,kvz) 

title('Yaw rate gain') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('kvz (N-m-s/rad)') 

axis tight 

grid; 

% 

% 

% 

figure(7) 
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subplot(221) 

plot(time,x(l,:)*180/pi;-',time,xkk(l,:)*180/pi) 

title('True & Estimated Roll Response') 

xlabel(Time (sec), Orbit=3.88(10A4)*) 

ylabel('Roll (deg)') 

axis tight 

grid; 

% 

subplot(222) 

plot(time,x(3,:)* 180/pi,'-',time,xkk(3,:)* 180/pi) 

title('True & Estimated Pitch Response1) 

xlabel(Time (sec), Orbit=3.S8(10A4)') 

ylabel('Pitch (deg)') 

axis tight 

grid; 

% 

subplot(223) 

plot(time,x(5,:)* 180/pi,'-',time,xkk(5,:)* 180/pi) 

title(True & Estimated Yaw Response') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('Yaw (deg)') 

axis tight 

grid; 

% 

% 

% 

figure(8) 

subplot(221) 

plot(time,x(2, :),'-',time,xkk(2,:)) 

title(True & Estimated Roll Rate') 

xlabel('Time (sec), Orbit=3.88(10A4)') 
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ylabelCRoll Rate (r/s)') 

axis tight 

grid; 

% 

subplot(222) 

plot(time,x(4,:),'-',time,xkk(4,:)) 

title('True & Estimated Pitch Rate") 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Pitch Rate (r/s)') 

axis tight 

grid; 

% 

subplot(223) 

plot(time,x(6,:),'-',time,xkk(6,:)) 

title('True & Estimated Yaw Rate') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('Yaw Rate (r/s)') 

axis tight 

grid; 

% 

%• 

% 

figure(9) 

subplot(221) 

plot(tl,x(l,r),tl,xkk(l,r),'.-') 

title('Snapshot of Roll Response') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Roll (deg)') 

axis([min(tl) max(tl) -3e-5 6e-5]); 

grid; 

% 
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subplot(222) 

plot(tl,x(3,r),tl,xkk(3,r),'.-') 

title('Snapshot of Pitch Response') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabelCPitch (deg)') 

axis([min(tl) max(tl) -3e-5 3e-5]); 

grid; 

% 

_subplot(223) 

plot(tl,x(5,r),tl,xkk(5,r),*.-') 

title('Snapshot of Yaw Response') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('Yaw (deg)') 

axis([min(tl) max(tl) le-5 8e-5]); 

grid; 

% 

% 

% 

figure(lO) 

subplot(221) 

plot(tl ,x(2,r),tl ,xkk(2,r),*.-') 

title('Snapshot of Roll Rate') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Roll Rate (r/s)') 

axis([min(tl) max(tl) -4e-7 4e-7]); 

grid; 

% 

subplot(222) 

plot(tl ,x(4,r),tl ,xkk(4,r),'.-') 

title('Snapshot of Pitch Rate') 

xlabel('Time (sec), Orbit=3.88(10A4)') 
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ylabel('Pitch Rate (r/s)') 

axis([min(tl) max(tl) -4e-7 4e-7]); 

grid; 

% 

subplot(223) 

plot(tl,x(6,r),tl,xkk(6,r),'.-') 

title('Snapshdt of Yaw Rate') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Yaw Rate (r/s)') 

' axis([min(tl) max(tl) -4e-7 4e-7]); 

grid; 

% 

% 

% 

figure(ll) 

subplot(221) 

plot(t2,qll) 

title('qir) 

xlabel('Time (sec), Orbit=3.88(10A4)') 

axis tight 

grid; 

% 

subplot(222) 

plot(t2,q33) 

title('q33') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

axis([min(t2) max(t2) 2.0240e-12 2.0242e-12]); 

grid; 

% 

subplot(223) 

plot(t2,q55) 
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title('q55') 

xlabel(*Time (sec), Orbit=3.88(10A4)') 

axis tight 

grid; 

% 

% 

% 

figure(12) 

subplot(221) 

plot(t2,pll) 

title('pll') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

axis tight 

grid; 

% 

subplot(222) 

plot(t2,p33) 

title('p33') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

axis tight 

grid; 

% 

subplot(223) 

plot(t2,p55) 

title('p55') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

axis tight 

grid; 

% 

% 

% 
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figure(13) 

plot(tl,x(l^),tl,xkk(l,r),,.-,,tl,zx(r))'
A') 

title('Roll Response Snapshot with Observations') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabelCRoll (deg)') 

axis tight 

grid 

% 

% 

% 

figure(14) 

plot(tl,x(3,r),tl,xkk(3,r),'.-',tl,zy(r),'A') 

title('Pitch Response Snapshot with Observations') 

xlabel(Time (sec), Orbit=3.88(10A4)') 

ylabel('Pitch (deg)') 

axis tight 

grid 

% 

% 

% '0 

figure(15) 

plot(tl,x(5,r),tl,xkk(5,r),'.-,,tl,zz(r),'A') 

title('Yaw Response Snapshot with Observations') 

xlabel('Time (sec), Orbit=3.88(10A4)') 

ylabel('Yaw (deg)') 

axis tight 

grid 

% 

% 

% 

figure(16) 
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subplot(211) 

plot(aeig,'.') 

title('Root Locus, No Controller') 

xlabel('Real') 

ylabel('Imaginary') 

grid 

% 

subplot(212) 

plot(augeig,7) 

title('Root Locus, PD Controller') :     • 

xlabel('Real') 

ylabel('Imaginary') 

axis([-.035 .035 -3e-3 3e-3]) 

grid 

%%%%%%%%%%%%%%%%%%%END MAIN %%%%%%%%%%%%%%%%% 

% 

% 

% 

function [F,k,Wo]=ssgains(y,h,Ix,Iy,Iz) 

% This function computes non-optimal gains for each PD controller. Both the 

% position and rate.gains will be time varying. In order to keep the satellite 

% nadir pointing at perigee, it is expected that the pitch gains will be much 

% higher than the roll and yaw gains. The F matrix is used, in part, to augment 

% the A matrix. The resulting augmented plant matrix has all six eigenvalues in 

% the left hand plane, which is a requirement for system stability. The k matrix 

% is used to calculate the reaction wheel control torques. 

% 

% 

% 

Wo=y(4,:); % Orbital angular velocity 

hy=h(2,:); % Angular momentum of yRW 
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% 

% Design torques 

% Allowable Steady State Errors 

Tx=5e-4; 

Ty=5e-2; 

Tz=5e-4; 

% 

ssphi=.l*pi/180; 

sstheta=.l*pi/18°; 

sspsi=.l*pi/180; 

% 

kx=(Tx-4*WoA2*(Ix-Iy)*ssphi+Wo*hy*ssphi)/ssphi; 

wnx=sqrt(4*WoA2*(Iy-Iz)/Ix+kx/Ix); % Roll gains & natural freq. 

kvx=2*wnx*Ix; 

% 

ky=(Ty-3 *WoA2*(Ix-Iz)*sstheta)/sstheta; 

wny=sqrt(3 * WoA2*(Ix-Iz)/Iy+ky/Iy); % Pitch gains & natural freq. 

kvy=2*wny*Iy; 

% 

kz=(Tz-WoA2*(-Ix+Iy)*sspsi+Wo*hy*sspsi)/sspsi; 

wnz=sqrt(WoA2*(-Ix+Iy)/Iz+kz/Iz); 

kvz=2*wnz*Iz; 

% 

% 

% 

F=[kx/Ix kvx/Ix 0 0 0 0;... 

0 0 ky/Iy kvy/Iy 0 0;... 

0000kz/Izkvz/Iz]; 

% 

k=[kx kvx 0 0 0 0;... 

OOkykvyOO;... 

0 0 0 0 kz kvz]; 

%0/.°/.%o/,o/o/o/,o/o/o/o/o, 

% Yaw gains & natural freq. 

% Controller gain matrix 

% Gain matrix 

%%%%%%%%%%%%% END FUNCTION SSGAIN %%%%%%%%%%%%%%%% 
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function ydot=ssorbit(t,y,FLAG,e,mu,p) 

% This function solves two first order differential equations for radius 

% and true anomaly using a Runge-Kutta integration scheme. In order to 

% have orbital angular velocity and acceleration available for each star 

% sensor measurement, the differential equations were solved at fixed, 

% discrete time step. The duration of the time steps is ten seconds, 

% same as the star sensor sampling time. 

% 

% Orbital radius 

% Rate of change of radius 

% True anomaly 

% Orbital angular velocity 

% 

% 

r=y(i,0; 

rdot=y(2,:); 

nu=y(3,:); 

Wo=y(4,:); 

% 

% Output 

ydot(l,:)=rdot; 

ydot(2,:)=sqrt(mu/p)*e*cos(nu)*Wo; 

ydot(3,:)=Wo; 

ydot(4,:)=-sqrt(mu/p)/rA2*(r*e*sin(nu)*Wo... 

+(l+e*cos(nu))*sqrt(mu/p)*e*sin(nu)); 

%%%%%%%%%%%%%%% END FUNCTION SSORBIT %%%%%%%%%%%%% 

% 

% ' 

% 

function [A,B,Wdot]=ssmatrix(y,h,mu,p,e,Ix,Iy,Iz) 

% This function computes the system matrices for the state space equations. 

% Both the A and B matrices are time varying since they both include 
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% orbital angular velocity and orbital angular acceleration terms. It is 

% assumed that these values can be pre-calculated and stored in the satellite 

% computer. According to engineers at the Aerospace corporation, this is not 

% an unreasonable assumption. Each time a star sensor observation is made, 

% associated with that measurement is a dedicated orbital angular velocity 

% and acceleration. 

% 

% 

% 

i=y(iv); 

nu=y(3,:); 

Wo=y(4,:); 

% 

0; 
0; 
0; 

hx=h(l,:) 

hy=h(2,:) 

hz=h(3,:) 

% 

Wdot=-sqrt(mu/p)/rA2*(r*e*sm(nu)*Wo... 

+(l+e*cos(nu))*sqrt(mu/p)*e*sin(nu)); 

% 

A=[0 10 0 0 0;... 

(-4*WoA2*(Iy-Iz)+Wo*hy)/Ix 0 0 ... 

-hz/Ix Wdot (-Wo*(-Ix+Iy-Iz)+hy)/Ix;... 

0 00 100;... 

-Wo*hx/Iy hz/Iy -3*WoA2*(Ix-Iz)/Iy 0 ... 

-Wo*hz/Iy -hx/Iy;... 

0 0000 1;... 

-Wdot (-Wo*(Ix-Iy+Iz)-hy)/Iz 0 hx/Iz ... 

(-WoA2*(-Ix+Iy)+Wo*hy)/Iz 0]; 

B=[0 0 0;1 0 0;0 0 0;0 1 0;0 0 0;0 0 1]; 

% Orbital radius 

% True anomaly 

% Orbital angular velocity 

% RW angular momentum 

% Orbital angular acceleration 

% Plant matrix 

% Control Matrix 

%%%%%%%%%%%%% END FUNCTION SSMATRIX %%%%%%%%%%%%%% 
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